Unified Apostol–Bernoulli, Euler and Genocchi polynomials
نویسندگان
چکیده
منابع مشابه
On the Multiple Sums of Bernoulli, Euler and Genocchi Polynomials
We introduce and investigate the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials by means of a suitable theirs generating polynomials. We establish several interesting properties of these polynomials. Also, we gave some propositions two theorems and one corollary.
متن کاملq-EULER AND GENOCCHI NUMBERS
Carlitz has introduced an interesting q-analogue of Frobenius-Euler numbers in [4]. He has indicated a corresponding Stadudt-Clausen theorem and also some interesting congruence properties of the q-Euler numbers. In this paper we give another construction of q-Euler numbers, which are different than his q-Euler numbers. By using our q-Euler numbers, we define the q-analogue of Genocchi numbers ...
متن کاملSome symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials
In 2008, Liu and Wang established various symmetric identities for Bernoulli, Euler and Genocchi polynomials. In this paper, we extend these identities in a unified and generalized form to families of Hermite-Bernoulli, Euler and Genocchi polynomials. The procedure followed is that of generating functions. Some relevant connections of the general theory developed here with the results obtained ...
متن کاملOn Genocchi Numbers and Polynomials
Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, C, and Cp will, respectively, denote the ring of p-adic rational integers, the field of p-adic rationalnumbers, the complex number field, and the completion of the algebraic closure of Qp. Let vp be the normalized exponential valuation of Cp with |p|p p−vp p 1/p. When one talks about q-extension, q is variously considered as an i...
متن کاملSome Generalizations and Basic (or q-) Extensions of the Bernoulli, Euler and Genocchi Polynomials
In the vast literature in Analytic Number Theory, one can find systematic and extensive investigations not only of the classical Bernoulli, Euler and Genocchi polynomials and their corresponding numbers, but also of their many generalizations and basic (or q-) extensions. Our main object in this presentation is to introduce and investigate some of the principal generalizations and unifications ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2011
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2011.07.031